
CALABI–YAU EMBEDDING OF SOME REDUCIBLE SURFACES

VIA ORBIFOLDS

1. Introduction

The purpose of this note is to introduce the local Gromov–Witten invariants of
a local del Pezzo orbifold and to prove embeddability of some higher rank surfaces
considered in [6]. Here, a del Pezzo orbifold is a 2 dimensional orbifold constructed
in the following way. Given a smooth projective surface S, a normal crossing divisor
D = D1 + . . . Dn, and a vector r⃗ ∈ Zn, we can attach a stabilizer group of µri to
Di, and construct a smooth DM stack SD,r⃗. It is called a root stack of S along D
[2]. These are examples of cyclotomic stacks in the sense of [?AH].

More explicitly, recall that the classifying stack BGm = [Spec C/Gm] classifies
Gm-bundles (and thus line bundles). Simirlarly, the stack [A1/Gm] classifies line
bundle and a section. In the following diagram, the map π denote a line bundle
corresponding to a map f and a data of a map X → [A1/Gm] is equivalent to a
section of π and a choice of f . Hence this determines a line bundle and a global
section. Similarly, a map to [Ar → Gr

m] corresponds to r line bundles and r global
sections.

X ×Gm
[A1/Gm] [A1/Gm]

X BGm

π

f

Given a ri-th power map θri that sends (Li, si) to (Lr
i , s

r
i ) where si is the section

whose zero scheme is Di, the root stack along D with order r⃗ is done by taking the
following fiber product

(1.1) SD,r⃗ = SL⃗i,s⃗,r⃗
= S ×[An/Gn

m],θr⃗ [A
n/Gn

m].

For our application, we will only concern when n = 1, r = 2 so we write simply S
for SD,r⃗. We work over C.

Remark 1.2. These constructions all make sense for general algebraic stakcs. How-
ever, we won’t need such generalities in this note. See Cadman’s papers for more
details.

2. Geometry of orbifolds

Here we recall a bit of well known facts on orbifolds. A good reference is [4],
chapter 4. See also [2] on root stacks. The root stack construction comes with a
map c to its coarse moduli space, which is just the underlying projective surface S

c : S → S.

It is an isomorphism on S \D and thus the generic stabilizer is trivial. Hence, it is
a Gorenstein orbifold. Its inertia stack is given by the disjoint union

IS = S ⊔D.
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It carries a canonical line bundle ωS or canonical divisor KS . The orbi-line bundle
ωS is given by

ωS = c∗ωS ⊗ L
where L⊗2 ≃ OS(D) is an orbi-line bundle which is not a pullback of a usual line
bundle on S. Let (z1, z2) be local coordinates with D given by z1 = 0 and let
(x1, x2) be a corresponding local coodrinate system of the upstair orbifold. Then
we have

c∗(dz1 ∧ dz2) = 2x1dx1 ∧ dx2

and the ramification divisor is given by x1 = 0. This shows that orbifold line bundle
ωS is not locally trivial around points on D and it has the induced µ2 action from
the downstair. On S \D, it is just the usual line bundle.

The notion of Cartier divisor can be adapted to the case of orbifolds. Intuitively,
they are given by local equations by an G-invariant functions, where G is the local
stabilizer group. An integral divisor D on S, when lifted on S, can be divisible
even if D is not divisible on S. By the same way as the canonical line bundle, the
canonical divisor is given by

KS = c∗KS +
1

2
D

which is a Q-divisor. The divisor 1
2D should be understood as a corresponding

divisor to L above. The anticanonical orbibundle K−1
S can also be defined.

The notion of Chern class also generalizes, having value in Hi(X,Q).
We say a Q-Cartier divisor D is ample if it is locally ample and some positive

multiple of it (viewed as a Cartier divisor on S) is an integral ample Cartier divisor.

Definition 2.1. Let S be an orbifold constructed from the root stack construction
on (S,D). If K−1

S is an ample divisor, then we say S is a del Pezzo orbifold.

3. Calabi–Yau embedding of some reducible surfaces

Let X be the total space of KS on S which is again an orbifold. It is a Calabi-
Yau orbifold of dimension 3 which we call an local (orbi)surface. Its coarse moduli
space X is known to be Q-factorial and it has a singularity along D in the zero
section and there exists a crepant resolution by a single blow-up. Locally, the coarse
moduli space look like

(3.1) Spec C[y1, y2, y3]µ2

where (−1) acts on y1 and y3 via multiplication by (−1). Hence, it is transverse A1

singularity. Since blowup commute with flat base change and the resolution of A1

singularity consists of a single P1, after the resolution we get P1 fibration over D.
Can it be other things? Understand F3

2 using this Resolving this singularity,
we get a genuine (non-stacky, non-compact) Calabi–Yau 3-fold X which has S∪DR
where R is a ruled surface over D.

Theorem 3.2. Let S be a smooth projective surface and D be a smooth divisor
with self intersection D2 = d and arithmetic genus (viewed as a smooth curve) g.
Then the above construction gives a (non-compact) Calabi–Yau 3-fold containing
S ∪D R where R is a ruled surface over D such that the self-intersection of D in R
is 2g − 2− d.
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Proof. The local coordinate of a coarse moduli space is given by Spec (C[x, y, z]µ2)
where µ2 acts with multiplication by (−1, 1,−1) on (x, y, z). This is transverse A1

singularity, locally
an A1 singulairty × A1.

Its resolution is given by blowing up the fixed loci, which is (0, y, 0) because the
resolution is given by resolution of A1 singularity with a product of A1. Since blowup
commute with flat morphism, it can be computed Zariski locally. Thus locally after
the blowup the exceptional divisor is P1×A1. The induced map on the exceptional
divisor R is π|R : R → D is thus a P1-bundle. In other words, R is a geometrically
ruled surface over D and thus it is a projectivization of a rank 2 vector bundle over
D. □

In the case D is P1 and D2 ≥ −1, the Calabi–Yau condition forces that we get
a unique Hirzebruch surface.

Theorem 3.3. Let S be a smooth projective surface and D be a smooth rational
curve with self-intersection D2 = d ≥ −1. Then there is a non-compact Calabi-Yau
3-fold X containing S ∪ F−2−d where S ∩ F−2−d = D is the unique negative curve
in F−2−d.

Proof. If D ≃ P1 and D2 ≥ −1, then the self-intersection of D in R is also negative
as their sum must be −2. By the previous theorem, R is ruled over D, it must
be a Hirzebruch surface which can only have a unique section with negative self-
intersection. □

Example 3.4. Let S = P2 and D be a smooth conic. In this case, the root stack
S is actually a global quotient stack S = [F0/⟨i⟩] where p : F0 → P2 is the double
cover of P2 branched along D and i : F0 → F0 is the involution that comes with
the double cover. Although scheme-theoretic quotient is just P2, it has nontrivial
stabilizer attached to D. Consider the toal space of line bundle ωS on S. Outside
D, it is just the usual line bundle. Thus, the orbifold structure is supported over D.
In local coordinate, the stabilizer just acts as multiplication by (−1) on the fiber
and the defining equation. Thus, the coarse moduli space of X has a transverse A1

singularity. Being Gorenstein Calabi–Yau, it admits a crepant resolution which is
just the blowing up the singular locus in this case. The resulting blow-up is F6 by
the Calabi–Yau condition and we get a normal crossing divisor P2 ∪ F6.

This example can be constructed from TotKF0
/⟨τ⟩ where τ is acting on the fiber

as well.
Hence the invariant for P2 ∪F6 in [6] could have been defined using this Calabi–

Yau embedding.

Example 3.5. Let S = P2 and D = ℓ be a line. In this case, there does not exist
a double cover of P2 branched along a line, so it cannot be constructed as a global
quotient of a variety. However, there is such a double cover locally, and it glues in
the category of orbifolds. Let S be such an orbifold, and X = Tot(ωS). The coarse
moduli space X has transverse A1 singularity along a line. Blowing up this line,

we get a divisor P2 ∪ F3 in the resolution X̃.
Since a coordinate axis in P2 is a torus invariant divisor, the orbifold X has toric

description, as a partial resolution of isolated quotient singularity C3/µ5.

Example 3.6. Let S = F0 = P1 × P1 and D be a smooth curve of class f1 + f2,
where fi is a ruling of F0. It is not a torus invariant divisor, and there is no double
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cover in branched along D in the categories of varieties. Let S be the (square) root
stack along D and let X be the total space of canonical bundle on S. Blowing up
D in the zero section, we get F0 ∪ F4.

Example 3.7. It can be extended to root stack of higher order of stabilizer group.
In this case, the canonical bundle becomes KS = c∗KS +

(
1− 1

n

)
D and thus the

zero section has An−1 singularity. we need more than one blowups to resolve the
singularity, and we get more than one ruled surface attached to S. For instance,
the partial resolution of C3/µ2k+1 can be obtained from this orbifold construction,
by considering P2

ℓ,k

In particular, we have the following.

Proposition 3.8. The snc del Pezzo surfaces in [6] can all be embedded into a
non-compact Calabi–Yau 3-fold.

Proof. The only remaining case is F0 ∪F4. Since the gluing curve is of class f1 + f2
which has self-intersection 2 in F0, Theorem 3.2. produces an embedding. □

We expect to produce all Calabi–Yau 3-fold containing shrinkable surfaces. How-
ever, we do not yet know how to deal with surfaces with some points on a component
blown-up.
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